Đường tròn ngoại tiếp - đường tròn nội tiếp

(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lê Xuân Long (trang riêng)
Ngày gửi: 15h:19' 18-03-2013
Dung lượng: 3.0 MB
Số lượt tải: 54
Số lượt thích: 0 người
TRƯỜNG THCS BƯNG BÀNG
HÌNH HOC 9
KIỂM TRA MIỆNG
Nhắc lại khái niệm đường tròn nội tiếp tam giác, đường tròn ngoại tiếp tam giác ? Nêu cách xác định tâm của các đường tròn đó?
Đường tròn ngoại tiếp.Đường tròn nội tiếp
Tiết 50
§8. ĐƯỜNG TRÒN NGOẠI TIẾP. ĐƯỜNG TRÒN NỘI TIẾP
1. Định nghĩa
- Đường tròn (O;R) là đường tròn ngoại tiếp hình vuông ABCD và ABCD là hình vuông nội tiếp đường tròn (O;R).
- Đường tròn (O;r) là đường tròn nội tiếp hình vuông ABCD và ABCD là hình vuông ngoại tiếp đường tròn (O;r).
- Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác và đa giác được gọi là đa giác nội tiếp đường tròn.
- Đường tròn tiếp xúc với tất cả các cạnhcủa một đa giác được gọi là đường tròn nội tiếp đa giác và đa giác được gọi là đa giác ngoại tiếp đường tròn.
Bài tập:Trong các hình sau, đa giác nào nội tiếp được đường tròn, đa giác nào ngoại tiếp được đường tròn ?
Hình 4
Hình 2
Hình 1
Hình 3
Hình 6
Hình 5
Bài tập:


§8. ĐƯỜNG TRÒN NGOẠI TIẾP. ĐƯỜNG TRÒN NỘI TIẾP
§8 ĐƯỜNG TRÒN NGOẠI TIẾP. ĐƯỜNG TRÒN NỘI TIẾP
1. Định nghĩa
- Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác và đa giác được gọi là đa giác nội tiếp đường tròn.
- Đường tròn tiếp xúc với tất cả các cạnhcủa một đa giác được gọi là đường tròn nội tiếp đa giác và đa giác được gọi là đa giác ngoại tiếp đường tròn.
Vẽ đường tròn tâm O bán kính R=2cm.
Vẽ một lục giác đều ABCDEF có tất cả các đỉnh nằm trên đường tròn (O).
Vì sao tâm O cách đều các cạnh của lục giác đều? Gọi khoảng cách này là r.
Vẽ đường tròn (O;r).
?
GIẢI
c) Các dây:
AB=BC=CD=DE=.EF=FA=2cm
=> Các dây AB; BC; CD; DE;EF; FA cách đều tâm hay tâm O cách đều các cạnh của đa
giác đều
a) Vẽ đường tròn (O;2cm)
b) Trên đường tròn (O;2cm) ta vẽ liên tiếp các dây AB; BC; CD; DE; EF; FA có độ dài bằng 2cm ta được lục giác đều ABCDEF.
d) Vẽ đường tròn (O;r)
§8 ĐƯỜNG TRÒN NGOẠI TIẾP. ĐƯỜNG TRÒN NỘI TIẾP
1. Định nghĩa
- Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác và đa giác được gọi là đa giác nội tiếp đường tròn.
- Đường tròn tiếp xúc với tất cả các cạnhcủa một đa giác được gọi là đường tròn nội tiếp đa giác và đa giác được gọi là đa giác ngoại tiếp đường tròn.
2. Định lí
Bất kì đa giác đều nào cũng có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.
Tâm của đường tròn ngoại tiếp và đường tròn nội tiếp đa giác đều có gì đặc biệt?

Tâm của đường tròn ngoại tiếp và đường tròn nội tiếp đa giác đều trùng nhau và được gọi là tâm đa giác đều.
TỔNG KẾT
Bài tập1: BT 61 sách giáo khoa trang 91
a) Vẽ đường tròn tâm O, bán kính 2cm.
b) Vẽ hình vuông nội tiếp đường tròn (O) ở câu a).
c) Tính bán kính r của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn (O; r).
Giải
a) Vẽ đường tròn (O; 2cm).
b) Vẽ hai
đường chéo AC
và BD vuông góc với
nhau. Nối A và B, B và C,
C và D, D và A, ta được hình vuông ABCD nội tiếp đường tròn (O; 2cm).
c) Vẽ OH vuông góc với AB.
OH là bán kính r của đường tròn nội tiếp hình vuông ABCD.
r = OH = HB
r2 + r2= OB2 = 22
2r2= 4
r2= 2
=> r = (cm)
Vẽ đường tòn (O; cm). Đường tròn này nội tiếp hình vuông ABCD.
Bài tập 2: Nêu cách xác định tâm của tam giác đều , hình vuông, lục giác đều ?
Tâm của tam giác đều là giao của 3 đường trung trực,
3 đường cao,3 đường trung tuyến của tam giác đều.
- Tâm của hình vuông là giao của 2 đường chéo của hình vuông .
- Tâm của lục giác đều là giao của 3 đường chéo của lục giác đều.
HƯỚNG DẪN HỌC TẬP
* Đối với bài học tiết này:
- Nắm vững định nghĩa, định lí về đường tròn ngoại tiếp, đường tròn nội tiếp.
- Biết cách vẽ lục giác đều, hình vuông, tam giác đều nội tiếp đường tròn.
- Làm bài tập: 62, 63, 64 trang 91,92 sách giáo khoa.
* Đối với bài học ở tiết học tiếp theo:
- Chuẩn bị trước bài 9 “Độ dài đường tròn, cung tròn” phần 1, 2, ?1, ?2
Kính chào qúy thầy cô
CHÚC CÁC EM HỌC SINH
CHĂM NGOAN, HỌC GiỎI